Tuesday, May 19, 2015

Programming Languages

Programming Languages

all about programming languages

Programming Languages - The term computer language is sometimes used interchangeably with programming language. However, the usage of both terms varies among authors, including the exact scope of each. One usage describes programming languages as a subset of computer languages. In this vein, languages used in computing that have a different goal than expressing computer programs are generically designated computer languages. For instance, markup languages are sometimes referred to as computer languages to emphasize that they are not meant to be used for programming.

High-level programming languages, while simple compared to human languages, are more complex than the languages the computer actually understands, called machine languages. Each different type of CPUhas its own unique machine language.


















It is difficult to determine which programming languages are most widely used, and what usage means varies by context. One language may occupy the greater number of programmer hours, a different one have more lines of code, and a third utilize the most CPU time. Some languages are very popular for particular kinds of applications. For example, COBOL is still strong in the corporate data center, often on large mainframes; Fortran in scientific and engineering applications; Ada in aerospace, transportation, military, real-time and embedded applications; and C in embedded applications and operating systems. Other languages are regularly used to write many different kinds of applications.


Are we talking your language? | Aculab


As a result, coding skills are in high demand, with programming jobs paying significantly more than the average position. Even beyond the tech world, an understanding of at least one programming language makes an impressive addition to any resumé.




Most programming languages have an associated core library (sometimes known as the 'standard library', especially if it is included as part of the published language standard), which is conventionally made available by all implementations of the language. Core libraries typically include definitions for commonly used algorithms, data structures, and mechanisms for input and output.
A type system defines how a programming language classifies values and expressions into types, how it can manipulate those types and how they interact. The goal of a type system is to verify and usually enforce a certain level of correctness in programs written in that language by detecting certain incorrect operations. Any decidable type system involves a trade-off: while it rejects many incorrect programs, it can also prohibit some correct, albeit unusual programs. In order to bypass this downside, a number of languages have type loopholes, usually unchecked casts that may be used by the programmer to explicitly allow a normally disallowed operation between different types. In most typed languages, the type system is used only to type check programs, but a number of languages, usually functional ones, infer types, relieving the programmer from the need to write type annotations. The formal design and study of type systems is known as type theory.

The 1980s were years of relative consolidation. C++ combined object-oriented and systems programming. The United States government standardized Ada, a systems programming language derived from Pascal and intended for use by defense contractors. In Japan and elsewhere, vast sums were spent investigating so-called "fifth generation" languages that incorporated logic programming constructs. The functional languages community moved to standardize ML and Lisp. Rather than inventing new paradigms, all of these movements elaborated upon the ideas invented in the previous decade.



Programming languages are not simply the tools that developers use to create programs or express algorithms. They’re also instruments to code and decode creativity. By observing the history of programming languages, we gain a unique perspective on our quest to find better ways to solve problems, facilitate collaboration, build great products, and reuse the efforts of others.

No comments :

Post a Comment